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OUTLINE

• Background: Relationships between Properties
and Performance of High-Density Materials
– the adiabatic shear failure of DU
– general approaches to alloy development

• Uranium (U-V-X) Alloys
• Alternative Matrix (adiabatic shearing) Tungsten

Composites
• Amorphous and Nanocrystalline Alloys
• Severe Deformation Processed WHAs
• Jacketed Penetrators
• Conclusions
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Properties vs. Performance
 Relationships/Requirements

• Engineering properties: strength and
toughness.
– Allow more efficient sabots/projectiles.
– Resist complex armors.
– Soft-launched projectiles expand options.

•High-rate, high pressure, deformation.
- Controls efficiency during deep penetration.

At the present time, Depleted
Uranium alloys provide the best
overall combination of structural and
high-rate properties.
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Pressure & Strain Rate Distributions
During Deep Penetration
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Strain-hardening and thermal-softening mechanisms
compete during the high rate (adiabatic) deformation.
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Flow/Failure of High-Density
 Penetrator Materials

DU failure by adiabatic shear.  This reduces the size of
penetrator head, burrows narrower & deeper cavity.
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Flow and Failure of High
Density Penetrator Materials

•  WIDER CHANNEL
•  MUSHROOM NOSE
•  LESS DEPTH

•  REMAINS SHARP
•  NARROW CHANNEL
•  DEEPER CAVITY

TUNGSTEN HEAVY ALLOY U-3/4 Ti ALLOY

U-8Mo ALLOYW-Ni-Fe
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Dynamic (SHB) CompressionTests
(strain to adiabatic shear failure)

ef = 30%

ef = >100%

U-3/4Ti specimen
cleaved by shear band

Dynamic compression experiments
provide a means for assessing
material failure behavior at high
loading rates.

350 
BRL: U - 6% Nb. 

in 

m 
LÜ 
(Z 
\- w 
UJ 
=3 

0.4 0.6 

TRUE. STRAIN 

350 
BRL: U - ,75% Tl., SOLUTIONIZED 

0.000 0.100 0.200 0.300 



Comparison of RHA Steel
Perforation Capabilities

Alloy Density (g/cc)
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¼-scale tests, 65g L/D=15 rods vs. 76.2mm RHA

 Deep Penetration performance is a function of
alloy density & strain to shear failure.
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Material Options

• DU alloys: Enhance susceptibility to shear failure,
while retaining/improving engineering properties.

• Non-DU materials: change flow/failure behavior
– Use alternative matrices, selection based on mechanical

and thermal properties that promote high-rate (adiabatic)
plastic instability and localization

• Matrix alloys w/high strength, low work hardening, low strain
rate sensitivity, rapid thermal softening

– Amorphous & nanocrystalline materials as a candidate
matrix alloy or entire composite (nano W phase)

• exhibit localized shear failure in dynamic and quasi-static tests
– Anisotropic flow/failure of W crystals

• Jacketed Penetrators: Systems approach, with
materials issues
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CURRENT ANTI-ARMOR MATERIALS
DEVELOPMENT PROGRAMS

Uranium-Vanadium
Alloys
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Uranium-Vanadium Alloys

To 250/172038-4918.6U-3/4Ti
To 320/220036-5516-18.5U-V-X(ternary)
To 310/214036-5416.7–18.5U-V (1-4.5%)
(Ksi/Mpa)HRC(g/cc)

Ult. Tensile StrengthHardnessDensityComposition

U-2.1%V,
banded
martensite

U-.75%Ti,
acicular
martensite
(from Staker)(from Staker)

• U-V alloys have the potential to maintain penetration
capability while reducing penetrator density and mass.



Tungsten Composites with
 Adiabatic Shearing Matrix Alloys

Residual Ti6Al4V Penetrator Residual W-Ti alloy
Composite Penetrator

• Replace conventional Ni-Fe matrix alloy with one more
prone to adiabatic shear failure, to enhance plastic instability.
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Dynamic Compression Tests
of Hafnium and Hafnium Alloy

Unalloyed Hf

HB6, Hf10Ti10Ta

Tests by Ramesh et al., at
Johns Hopkins Univ.

• Hafnium alloy HB6 demonstrated the preferred failure
behavior in dynamic compression tests.
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Perforation of Steel

Alloy Density (g/cc)
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•

Performance of W composite with hafnium alloy matrix
significantly better than conventional (Ni-Fe)-matrix WHAs,
but still short of DU.

W-Hf alloy
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W Composites with Bulk
Amorphous Metal (BAM) Matrices

Typical Mechanical Behavior: no strain
hardening in quasi-static σ-ε curve, serrated
plastic flow (shear banding)

“Deformation Mechanisms of the
ZrTiNiCuBe Metallic Glass”,
Wright, Saha, & Nix

Angled (~ 45°) shear
band failure

•Amorphous alloys lack long-
range structure of crystalline
solids.

Crystalline Amorphous
•Unique mechanical
properties: high elastic limit
(2-3% strain, 1.6GPa Y.S.,
no work-hardening).
•Recent development of
complex, multi-component
bulk metallic glass alloys
make 1 to 5 cm thick sections
possible (low quench rates)
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Tungsten wire/
amorphous alloy
composite.

80% wire
reinforced.

Sub-scale ballistic tests
suggest DU-like improvement
in penetration performance.
From ARO grant to CalTech
(W. Johnson)

•ARO-funded CalTech
development of W-composite using
Z-Ti-Cu-Ni-Be bulk castable
amorphous alloy

W Composites with Bulk
Amorphous Metal (BAM) Matrices
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Nanocrystalline Materials

• Like amorphous metals,
nanocrystalline (<100 nm
GS) metals exhibit little or
no work-hardening or bulk
plasticity in quasi-static
tests

• Shear banding behavior has
been observed in materials
with GS >250 nm

Tests by Dexin Jia, of Johns
Hopkins U., aver.GS 268 nm

7 m 

1.5 10 

1 10*     - 

*     5 10' 



Ballistic Tests of Nanocrystalline
W-Composite

126018600U-3/4 Ti, Rc 40Depleted Uranium

13501700080W-20 HB3W-Composite w/Hf matrix
134715200W-Cu-Ni-AlNano W-Composite

13901710090W-9Ni-1CoConventional WHA

(m/s)(kg/m3)
Limit VelocityDensityMaterialPenetrator Type

•Performance of nanocomposite
surpassed that of conventional
WHA or best adiabatic-shearing
matrix, despite lower density

•DU vs. WHA performances
narrowed, but DU is still
superior

Nano W-Composite Penetrator Erosion
Products Lining Penetrator Tunnel (15X)
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SEVERE PLASTIC
 DEFORMATION PROCESSING

  Equi-Channel Angular Pressing (ECAP)
•  New Mechanical Working Technique
•  Developed in FSU
•Path to improved mechanical properties or
alternative path to grain size refinement
(nano)

Key Features
•  Cross section in equals
cross section out.
• Pure shear deformation
• Imparts cold work (>99% )
with or w/o microstructural
changes (reversible).
•Multiple passes increase
deformation, refine grain size

5056 Aluminum Alloy
ECAE, >2x strength

#0f Passes  Equiv. Reduction
      1             69%
      2             90
      4             99
      8             99.99

PARTICULATE MATERIALS

PROCESSING TEAM
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TEM STRUCTURE AND
MICRODIFFRACTION PATTERN

8 PASSES, ROUTE C

Cross Section
1 µm

•  Ultra Fine Grained (UFG) Structure

•  Mean Grain Size Approximately 1 µm, many grains 0.3 to 0.5 µm
PARTICULATE MATERIALS

PROCESSING TEAM

Die Angle of 110°
Route C, 4 Passes
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Material Bonding for Jacketed Penetrators

Thermal Spray Explosive Cladding

Goals: Fracture Resistance, Improved Stiffness, Reduced Mass

Candidate bonding techniques guided by ballistic
experiments and simulations; FOCUS – High Strength Bonds

Jacket Material
Selection and Bond

Strength will be Key to
success



üMetallography
üCenterline Properties
ü High Strength Bond

Material Bonding for Jacketed Penetrators

, 316L Stainless Steel

, Tungsten Heavy Alloy

Ø High Strength Bond Achieved! 
§ Subscale Experiments Pending
§ Reactive & Passive Targets

Ø Follow-on contract in place.
§ Full Scale Processing

ØIterate based on Ballistic Results.
Ø Future – Consider alternate bonding.

Ø Swaging
Ø Co-extrusion
Ø Cold Spray 
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Conclusions/Summary

• Certain minimum mechanical properties required
for launch, for performance vs. complex armors

• Efficient flow & failure behaviors improve
penetration performance against thick monolithic
armor and individual armor components (e.g.
basal armor behind ERA applique)

• Alloy development efforts must meet both goals

£1 


